Generic bioaffinity silicone surfaces
Hong Chen, Michael. A. Brook, Heather Sheardown, Yang Chen, Bettina Klenkler. Bioconjugate Chemistry, 2006, 17, 21-28.
文章链接:http://dx.doi.org/10.1021/bc050174b

Synthetic polymer surfaces require surface modification to improve biocompatibility. A generic route to biocompatible silicone elastomers is described involving high yield surface functionalization of standard silicones with hydrosilanes, hydrosilylation using asymmetric, allyl-, NSC-terminated PEO of narrow molecular weight, and covalent modification in one step with amine-containing biological molecules including oligopeptides (YIGSR,RGDS), proteins (EGF, albumin, fibrinogen, mucin), and glycosaminoglycans (heparin). Efficient, high-density binding (e.g., 0.2 EGF molecules/nm2) was demonstrated using radiolabeling studies. The resulting surfaces were demonstrated to be biocompatible by further reaction with biomolecules, for example, thrombosis suppression on surfaces modified by heparin + ATIII, and the formation of confluent corneal epithelial cell layers on EGF, RGDS, or YIGSR surfaces.



 

苏州大学大分子与生物表界面实验室版权所有 Copyright © 2008-2017


360网站安全检测平台
Powered by sudytech