Protein-resistant and fibrinolytic polyurethane surfaces
Zhaoqiang Wu, Hong Chen*, Xiaoli Liu, John L. Brash*. Macromolecular Bioscience, 2012, 12, 126-131.
文章链接:http://dx.doi.org/10.1002/mabi.201100211

Surfaces with resistance to non-specific protein adsorption and a high capacity to bind plasminogen from plasma are developed for application as fibrinolytic surfaces in blood contact. A new method is reported for grafting poly(OEGMA-co-HEMA) copolymers on polyurethane surfaces. The OEGMA provides effective protein resistance due to the PEG side chains and the HEMA provides a high density of OH groups for attachment of lysine. Adsorption of fibrinogen from buffer and plasma to these surfaces is low, indicating significant protein resistance. Plasminogen binding from plasma is high, and clot dissolution on surfaces where plasminogen adsorbed from plasma is converted to plasmin is rapid.



 

苏州大学大分子与生物表界面实验室版权所有 Copyright © 2008-2017


360网站安全检测平台
Powered by sudytech